Chemistry Study Materials for Class 11 (NCERT Based Questions with Answers) Ganesh Kumar Date:- 03/09/2020

(Chapter -01)Some Basic Concept of Chemistry

Five Marks questions with answers

- What is the difference between empirical and molecular formula? A compound contains 4.07 % hydrogen, 24.27 % carbon and 71.65 % chlorine. Its molar mass is 98.96 g. What are its empirical and molecular formulas?
- Ans. An empirical formula represents the simplest whole number ration of various atoms present in a compound whereas the molecular formula shows the exact number of different types of atoms present in a molecule of a compound.

Name of	Percentage	Step-1Conversion of	Step 2. number	Step 3. Divide the mole
element	of elements	mass per cent to	moles of each	value by the smallest
		grams.	element	number
С	24.27%	24.27g	24.27/12 = 2.0225	2.0225/2.018 = 1
H	4.07%	4.07g	4.07/1=4.07	4.07/2.018 = 2
Cl	71.65%	71.65g	71.65/35.5 = 2.018	2.018/2.018 = 1

The empirical formula of the above compound is CH₂CI.

Empirical formula mass is 12 + (1x2) + 35.5 = 49.5

n= molecular mass/ empirical formula mass =98.96/49.5 = 2 Hence molecular formula is $C_2H_4Cl_2$

2. Dinitrogen and dihydrogen react with each other to produce ammonia according to the following chemical equation:

 $N_2(g) + H_2(g) \rightarrow 2NH_3(g)$

(i) Calculate the mass of ammonia produced if 2.00×10^3 g dinitrogen reacts with 1.00×10^3 g of dihydrogen.

- (ii) Will any of the two reactants remain unreacted?
- (iii) If yes, which one and what would be its mass?
- Ans. (i) Balancing the given chemical equation, $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ From the equation, 1 mole (28 g) of dinitrogen reacts with 3 mole (6 g) of

dihydrogen to give 2 mole (34 g) of ammonia.

 $\Rightarrow 2.00 \times 10^3$ g of dinitrogen will react with $\frac{6 \text{ g}}{28 \text{ g}} \times 2.00 \times 10^3 \text{ g}$ dihydrogen

i.e., 2.00×10^3 g of dinitrogen will react with 428.6 g of dihydrogen.

Given, Amount of dihydrogen = 1.00×10^3 g

Hence, N_2 is the limiting reagent.

28 g of N_2 produces 34 g of $NH_{3.}$

Hence, mass of ammonia produced by 2000 g of N₂ = $\frac{34 \text{ g}}{28 \text{ g}} \times 2000 \text{ g}$ = 2428.57 g

- (ii) N_2 is the limiting reagent and H_2 is the excess reagent. Hence, H_2 will remain unreacted.
- (iii) Mass of dihydrogen left unreacted = $1.00 \times 10^3 \text{ g} 428.6 \text{ g}$

= 571.4 g

HOTS (Higher Order Thinking Skills)

- 1. What is the difference between 160 cm and 160.0 cm
- Ans. 160 has three significant figures while 160.0 has four significant figures. Hence, 160.0 represent greater accuracy.
- 2. In the combustion of methane, what is the limiting reactant and why?
- Ans. Methane is the limiting reactant because the other reactant is oxygen of the air which is always present in excess. Thus, the amounts of CO_2 and H_2O formed depend upon the amount of methane burnt.

- 3. A compound made up of two elements A and B has A= 70 %, B = 30 %. Their relative number of moles in the compound are 1.25 and 1.88. calculate
 - a. Atomic masses of the elements A and B
 - b. Molecular formula of the compound , if its molecular mass is found to be 160

Ans. Relative no. of moles of an element = $\frac{\%}{100}$ of the element

Atomic mass

Or atomic mass = $\frac{\%}{100}$ of the element = $\frac{70}{100}$ = 56

Relative no. of moles 1.25

Atomic mass of B = 30/1.88 = 16

Calculation of Empirical formula

Element	Relative no. of	Simplest molar	Simplest whole no.
	moles	ratio	molar ratio
А	1.25	1.25/1.25 = 1	2
В	1.88	1.88/1.25 = 1.5	3

Empirical formula = A_2B_3

Calculation of molecular formula-

Empirical formula mass = $2 \times 56 + 3 \times 16 = 160$

n= molecular mass / Empirical formula mass = 160/160 = 1

Molecular formula = A_2B_3
